Generating pseudo-random speckle illumination patterns allows for high-resolution imaging

Generating pseudo-random speckle illumination patterns allows for high-resolution imaging

Press releases may be edited for formatting or style | February 06, 2020 Endoscopy
WASHINGTON--(BUSINESS WIRE)--Using pseudo-random speckle patterns is an efficient way to image targets, but most approaches require bulky, expensive, complex and slow machinery. To apply this technique to biomedical imaging, such as ultra-thin endoscopy or in vivo neural imaging, a smaller device that can generate random speckles is needed.

A team of researchers led by Takuo Tanemura at the University of Tokyo, Japan, has demonstrated the use of a multimode fiber (MMF) in combination with an integrated optical phased array (OPA) chip for single-pixel imaging in potential biomedical applications.

Taichiro Fukui, a PhD student in the group, will present their imaging technique at the Optical Fiber Communication Conference and Exhibition (OFC), to be held 8-12 March 2020 at the San Diego Convention Center, California, U.S.A.

Petrone Associates seeking certified M/WBE expert firm in Medical Physics

Services will be provided to healthcare facilities in NY City. Must have graduate trained, ABR, ABMP & ABSNM certified & licensed Medical Physicists in Diagnostic, Therapeutic, Nuclear Medicine & Medical Health Physics. Contact

According to Fukui, previous research has shown that illuminating a target using random speckles rather than a focused spot enhances the spatial resolution of an imaging process. “This is because unlike a focused spot, the random speckle illumination consists of interference patterns that contain higher spatial frequency elements,” he said.

By integrating an MMF output with an OPA chip, which splits the input light into a number of independent phase shifters, the group was able to generate different random speckle patterns to illuminate the target.

“Although we have previously demonstrated random-speckle-based imaging by just using an OPA without MMF, we could not resolve a large number of points due to the limited number of phase shifters on the OPA,” said Fukui. “Surprisingly, in this work, we discovered that by transmitting through an MMF, the number of resolvable points can be increased drastically.”

With a simple matrix multiplication operation of the illumination pattern matrix and the transmitted optical power matrix, the image of the target can be quickly reconstructed.

In testing this method, the team was able to image 490 resolvable points using 128 phase shifters and 600 illumination patterns. This result is comparable to other MMF methods, but with a smaller, cheaper and faster technique.

“The most important finding in this work is that the resolvable number is essentially determined by the spatial capacity of the MMF and no longer by the OPA, as in conventional methods of using an OPA only,” Fukui said. “We have confirmed that the number of resolvable points can even exceed 1,000 if we have stronger intermodal coupling inside the MMF. Our work is just the first step to demonstrate such possibilities.”

You Must Be Logged In To Post A Comment