Innovations sparking quantum leap in remote cardiac monitoring technology

Innovations sparking quantum leap in remote cardiac monitoring technology

April 17, 2019
Patient Monitors
From the April 2019 issue of HealthCare Business News magazine

By Stuart Long

Remote cardiac monitoring has come a long way since 1947.
That was our “Kitty Hawk”, when Dr. Ben Holter first donned a backpack with more than 80 pounds of vacuum tube-era monitoring equipment, hit the “record” button on a state-of-the-art reel-to-reel machine, got on a stationary bike and started pedaling. That was the first known broadcast of a radio electrocardiogram.

Dr. Holter didn’t stop there. He continued to develop the technology, collaborating with Bruce Del Mar of Del Mar Avionics. New solid-state technology, semiconductors and advances in electronics design enabled them to miniaturize the device. The revolution came when the monitor could be reduced to the size of a deck of cards – making it truly wearable and portable. The improvement was exponential – and their invention, for all its practical limitations, saved an untold number of lives.

New & Refurbished C-Arm Systems. Call 702.384.0085 Today!

KenQuest provides all major brands of surgical c-arms (new and refurbished) and carries a large inventory for purchase or rent. With over 20 years in the medical equipment business we can help you fulfill your equipment needs

The cardiac monitoring industry is now undergoing a technological revolution that is just as significant as the miniaturization revolution made possible by the semiconductor. Advances in telecommunications, data storage and management, SaaS (software-as-a-service) and artificial intelligence made in just the last few years are enabling us to make a quantum leap in cardiac diagnosis and intervention. We’re already seeing tremendous improvements for both patients and physicians as more doctors adopt the next generation of cardiac monitoring devices.

Limitations of Holter-like systems
Until now, Holter-style monitors and those developed with similar technology had serious limitations:

1. Patients vulnerable during the monitoring period. First, patients had to wear legacy devices for 2 to 3 days or more, and then return them to the doctor’s office to get data uploaded. Then doctors had to rely on third-party independent diagnostic testing facilities (IDTFs) to get reams of data read to get a diagnosis. This adds days to the diagnostic process – and leaves patients vulnerable to fatal arrhythmias occurring during the monitoring period.

Today, ambulatory cardiac monitoring devices can send secure patient data directly to doctors’ electronic devices while making use of artificial intelligence to improve the process dramatically so physicians can get an intelligent up-to-the-minute feed throughout the monitoring period. They can set up alerts to give them instant notification of potentially dangerous arrhythmias. This alone can potentially allow for physicians to improve the time to intervention such that patients are treated faster.

You Must Be Logged In To Post A Comment