Over 1950 Total Lots Up For Auction at Two Locations - NJ Cleansweep 06/13, NJ 06/14

High density EEG produces dynamic image of brain signal source

Press releases may be edited for formatting or style | April 23, 2020 Alzheimers/Neurology

Around one percent of the global population suffers from epilepsy, and roughly one-third of cases are drug-resistant, requiring surgical intervention. Yet until now, no current non-invasive imaging modality has the spatial specificity to accurately determine the epileptogenic zone (EZ), which represents the minimum amount of tissue that must be removed to halt seizures.

"By analyzing epilepsy networks with our proposed FAST-IRES framework, we have demonstrated that the EZ can be determined objectively and noninvasively with high precision from scalp high density EEG recordings," wrote He and his co-authors.

There findings were validated against readings from conventional invasive intracranial recordings and surgical outcomes from each patient, proving FAST-IRES' effectiveness.

The study also marks one of the first times high-density EEG has been used to study epileptic seizures. The more powerful imaging technology, packing more than double the electrodes generally used in a clinical setting, is now available to patients treated at the Mayo Clinic. He believes that within the next five years, the FAST-IRES methodology will begin to impact the way we understand a number of neurological disorders.

"This work demonstrates that EEG source imaging may become the non-invasive high-spatial, high-temporal resolution paradigm for human brain imaging technology, an important goal of the BRAIN Initiative." said He, who served as a member of the NIH BRAIN Multi-Council Working Group from 2015-2019.

He's research may be life-changing for those suffering from epilepsy and could benefit researchers and physicians across the field of neurology, neurosurgery, and human neuroscience. This work brings the NIH and the scientific community one step closer to achieving a revolutionary new dynamic picture of the brain.

The work is a multi-year collaboration with Dr. Gregory Worrell's team at Mayo Clinic, Rochester. Other collaborators on the paper included first author Abbas Sohrabpour, a BME postdoctoral associate; co-authors Zhengxiang Cai and Shuai Ye, BME Ph.D. students in He's lab; and clinical co-authors Gregory Worrell and Benjamin Brinkmann of the Mayo Clinic.

This work was supported in part by the National Institute of Neurological Disorders and Stroke, National Institute of Biomedical Imaging and Bioengineering, National Institute of Mental Health, and National Center for Complementary and Integrative Health.

You Must Be Logged In To Post A Comment